Ad
Ad

Hyperbola Equations in Coordinate Geometry

General Form: Ax² - Cy² + Dx + Ey + F = 0Standard Form: (x-h)²/a² - (y-k)²/b² = 1

General Form of a Hyperbola

Ax² - Cy² + Dx + Ey + F = 0

where A ≠ 0, C ≠ 0, and A and C have opposite signs for a real hyperbola.

Center

(-D/(2A), -E/(2C))

h = -D/(2A), k = -E/(2C)

Semi-axes

a² = discriminant/A

b² = -discriminant/C

Asymptotes

y - k = ±(b/a)(x - h)

Two diagonal lines

🎯Standard Form and Orientation

Horizontal Transverse Axis

(x - h)²/a² - (y - k)²/b² = 1

Center: (h, k)

Vertices: (h±a, k)

Foci: (h±c, k)

where c² = a² + b²

Vertical Transverse Axis

(y - k)²/a² - (x - h)²/b² = 1

Center: (h, k)

Vertices: (h, k±a)

Foci: (h, k±c)

where c² = a² + b²

Eccentricity and Foci

Eccentricity (e)

e = √(1 + b²/a²)

or e = c/a

Range: e > 1

Always greater than 1 for hyperbolas

Foci Distance

c = √(a² + b²)

Distance from center to focus

Note: c > a always

Unlike ellipse where c < a

Focal Property

|d₁ - d₂| = 2a

Property: Difference of distances

From any point to foci is constant

Absolute difference

📐Asymptotes

Horizontal Hyperbola

y - k = ±(b/a)(x - h)

Equations:

  • • y = k + (b/a)(x - h)
  • • y = k - (b/a)(x - h)
  • • Pass through center (h, k)

Vertical Hyperbola

y - k = ±(a/b)(x - h)

Properties:

  • • Hyperbola approaches but never touches
  • • Slopes are ±a/b
  • • Form a rectangle with vertices

🔄Special Cases

Rectangular Hyperbola

a = b

Equation: xy = c²/2

Asymptotes perpendicular

45° rotated form

Centered at Origin

x²/a² - y²/b² = 1

Center: (0, 0)

Simplest form

Most common in problems

Conjugate Hyperbola

-x²/a² + y²/b² = 1

Property: Swapped axes

Same asymptotes

Perpendicular transverse axes

📝Parametric Form

Horizontal Hyperbola

x = h + a sec(t)

y = k + b tan(t)

  • • Uses secant and tangent
  • • Parameter t is angle
  • • Traces one branch at a time

Alternative Form (Hyperbolic)

x = h + a cosh(t)

y = k + b sinh(t)

  • • Uses hyperbolic functions
  • • Natural for hyperbolas
  • • Traces entire branch smoothly

🔬 Real-World Applications

  • Navigation: LORAN and GPS positioning systems
  • Physics: Particle trajectories and orbits
  • Architecture: Cooling towers and structural design
  • Optics: Hyperbolic mirrors and lenses
  • Astronomy: Comet and spacecraft trajectories

🧮 Problem-Solving Tips

  • • Check A and C have opposite signs
  • • Identify transverse axis orientation
  • • Remember: c² = a² + b² (not subtraction!)
  • • Asymptotes pass through center
  • • Eccentricity e > 1 always
  • • Focal property uses difference, not sum
Ad