Ad

Ellipse Equations in Coordinate Geometry

General Form: Ax² + Cy² + Dx + Ey + F = 0Standard Form: (x-h)²/a² + (y-k)²/b² = 1

General Form of an Ellipse

Ax² + Cy² + Dx + Ey + F = 0

where A ≠ 0, C ≠ 0, A ≠ C, and both have the same sign for a real ellipse.

Center

(-D/(2A), -E/(2C))

h = -D/(2A), k = -E/(2C)

Semi-axes

a = √(discriminant/A)

b = √(discriminant/C)

Condition

D²/(4A²) + E²/(4C²) - F > 0

For real ellipse

🎯Standard Form and Properties

Standard Form

(x - h)²/a² + (y - k)²/b² = 1

Center: (h, k)

Semi-major axis: max(a, b)

Semi-minor axis: min(a, b)

Domain: [h - a, h + a]

Range: [k - b, k + b]

Conversion Formulas

General → Standard:

h = -D/(2A), k = -E/(2C)

a² = discriminant/A

b² = discriminant/C

discriminant = D²/(4A²) + E²/(4C²) - F

Standard → General:

A = 1/a², C = 1/b²

D = -2h/a², E = -2k/b²

F = (h²/a² + k²/b² - 1)

Eccentricity and Foci

Eccentricity (e)

e = √(1 - b²/a²)

where a > b

Range: 0 < e < 1

e = 0 is a circle, e → 1 is very elongated

Foci Location

c = ae

or c = √(a² - b²)

If a > b: (h±c, k)

If b > a: (h, k±c)

Horizontal or vertical

Focal Property

d₁ + d₂ = 2a

Property: Sum of distances

From any point to both foci is constant

Defines the ellipse shape

📐Special Cases and Axes

Centered at Origin

x²/a² + y²/b² = 1

Center: (0, 0)

  • Simplest form
  • Aligned with axes
  • Most common in problems

Axis Orientation

If a > b:

Major axis is horizontal

If b > a:

Major axis is vertical

Larger denominator determines major axis direction

📝Alternative Forms

Parametric Form

x = h + a cos(t)

y = k + b sin(t)

where 0 ≤ t ≤ 2π

  • • Useful for plotting points
  • • Easy to animate
  • • Parameter t represents angle
  • • Traces entire ellipse once

Polar Form (Centered at Origin)

r = ab/√((b cos θ)² + (a sin θ)²)

Alternative form with focus at origin:

r = a(1-e²)/(1-e cos θ)

  • • More complex than circle
  • • Used in orbital mechanics
  • • θ is the polar angle

🔄Tangent and Normal Properties

Tangent at Point (x₁, y₁)

Equation:

(x₁-h)(x-h)/a² + (y₁-k)(y-k)/b² = 1

• Point must be on the ellipse

• Perpendicular to radius at that point

• Unique tangent at each point

Reflection Property

Focal Property:

A line from one focus reflects off the ellipse and passes through the other focus

• Used in whispering galleries

• Basis for elliptical mirrors

• Important in acoustics and optics

🔬 Real-World Applications

  • Astronomy: Planetary orbits around the sun
  • Architecture: Whispering galleries and acoustic design
  • Engineering: Elliptical gears and machine parts
  • Medicine: Lithotripsy (kidney stone treatment)
  • Optics: Reflectors and lens design

🧮 Problem-Solving Tips

  • • Check A ≠ C for it to be an ellipse
  • • Use standard form for geometric problems
  • • Identify major axis (larger denominator)
  • • Calculate eccentricity to find shape
  • • Remember: center is (-D/(2A), -E/(2C))
  • • Verify discriminant > 0 for real ellipse
Ad