Ad

Circle Equations in Coordinate Geometry

General Form: ax² + ay² + 2gx + 2fy + c = 0Standard Form: (x - h)² + (y - k)² = r²

General Form of a Circle

ax² + ay² + 2gx + 2fy + c = 0

where a ≠ 0 and g² + f² - ac > 0 for a real circle.

Center

(-g/a, -f/a)

h = -g/a, k = -f/a

Radius

√(g² + f² - ac)/|a|

r = √(discriminant)/|a|

Condition

g² + f² - ac > 0

For real circle

🎯Standard Form and Transformations

Standard Form

(x - h)² + (y - k)² = r²

Center: (h, k)

Radius: r

Domain: [h - r, h + r]

Range: [k - r, k + r]

Conversion Formulas

General → Standard:

h = -g/a, k = -f/a

r² = (g² + f² - ac)/a²

Standard → General:

g = -ah, f = -ak

c = a(h² + k² - r²)

Special Cases and Properties

Unit Circle

x² + y² = 1

Center: (0, 0)

Radius: 1

Used in: Trigonometry

Centered at Origin

x² + y² = r²

Center: (0, 0)

Radius: r

Simplest form

Point Circle

r = 0

When: g² + f² = ac

Result: Single point

Degenerate case

📐Distance and Tangent Properties

Distance from Point to Circle

d = |√((x₀-h)² + (y₀-k)²) - r|

Point (x₀, y₀):

  • Inside: distance < r
  • On circle: distance = r
  • Outside: distance > r

Tangent Line

At point (x₁, y₁) on circle:

(x₁-h)(x-h) + (y₁-k)(y-k) = r²

From external point:

Length = √((x₀-h)² + (y₀-k)² - r²)

🔄Circle Relationships

Two Circles

Distance between centers:

d = √((h₁-h₂)² + (k₁-k₂)²)

Separate: d > r₁ + r₂

External tangent: d = r₁ + r₂

Intersecting: |r₁ - r₂| < d < r₁ + r₂

Internal tangent: d = |r₁ - r₂|

One inside other: d < |r₁ - r₂|

Circle and Line

Line: Ax + By + C = 0

Distance from center:

d = |Ah + Bk + C|/√(A² + B²)

No intersection: d > r

Tangent: d = r

Two intersections: d < r

📝Alternative Forms

Parametric Form

x = h + r cos(t)

y = k + r sin(t)

where 0 ≤ t ≤ 2π

  • • Useful for plotting points
  • • Easy to animate
  • • Parameter t represents angle

Polar Form (Centered at Origin)

r = constant

where r is the radius

  • • Simplest in polar coordinates
  • • All points equidistant from origin
  • • θ can vary from 0 to 2π

🔬 Real-World Applications

  • Engineering: Wheel and gear design
  • Physics: Circular motion and orbits
  • Computer Graphics:Drawing curves
  • Navigation: Radar and GPS systems
  • Architecture: Arches and domes

🧮 Problem-Solving Tips

  • • Check discriminant: g² + f² - ac > 0
  • • Use standard form for geometric problems
  • • Convert between forms as needed
  • • Parametric form helpful for animations
  • • Remember: center is (-g/a, -f/a)
Ad